Conventional Methods – Simple Linear Regression
Defination
Predict a Y usig a single feature X by minimize the errors by a cost function.
Cost function
Mean Squared Error(L2 loss) function
Steps with code examples
Step 1: Data Preprocessing
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
dataset = pd.read_csv('dataset.csv')
X = dataset.iloc[ : , : 1 ].values
Y = dataset.iloc[ : , 1 ].values
from sklearn.cross_validation import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size = 1/4, random_state = 0)
Step 2: Fitting Simple Linear Regression Model to the training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train)
#### Step 3: Predecting the Result
Y_pred = regressor.predict(X_test)
#### Step 4: Visualization ##### Visualising the Training results
plt.scatter(X_train , Y_train, color = 'red')
plt.plot(X_train , regressor.predict(X_train), color ='blue')
##### Visualizing the test results
plt.scatter(X_test , Y_test, color = 'red')
plt.plot(X_test , regressor.predict(X_test), color ='blue')