Data Prepocessing, way-to-ds-ep02

#ds

Data Proprocessing

There are essentially 6 steps to do data preprocessing.

Step 1: Importing the libraries

import numpy as np
import pandas as pd

Step 2: Importing dataset

dataset = pd.read_csv('dataset.csv')
X = dataset.iloc[ : , :-1].values
y = dataset.iloc[ : , 3].values

Step 3: Handling the missing data

from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
imputer = imputer.fit(X[ : , 1:3])
X[ : , 1:3] = imputer.transform(X[ : , 1:3])

Step 4: Encoding categorical data

Some features are not numeric values but text, so to encode the categories into numbers

from sklearn.preprocessing import LabelEncoder
labelencoder_X = LabelEncoder()
X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0])

Step 5: Splitting the dataset into training sets and Test sets

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split( X , y , test_size = 0.33, random_state = 7)

Step 6: Feature Scaling

Some features are in different standardization, so they should be scaled into normalization

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.fit_transform(X_test)